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Abstract
We test the consistency of the use of a noncommutative theory description for
charged particles in a strong magnetic field, by deriving the induced Chern–
Simons (CS) term for an external Abelian gauge field in 2 + 1 dimensions.
In this description, the system is modelled by a noncommutative matter
field coupled to a U(1) noncommutative gauge field, related to the original,
commutative one, by a Seiberg–Witten transformation. We show that an
Abelian CS term for the commutative gauge field is indeed induced, and
moreover that it matches the result of previous commutative field theory
calculations.

PACS numbers: 11.10.−z, 11.15.−q

1. Introduction

The relevance of noncommutative field theories for the description of (2 + 1)-dimensional
systems in a strong external magnetic field, notably the quantum Hall effect, hardly needs
to be stressed. Indeed, it was shown some time ago that noncommutative field theories
in 2 + 1 dimensions may be a useful tool for the approximate description of some planar
condensed matter models, when the kinetic term may be neglected in comparison with the
coupling between the matter current and the external field. When this is the case, the two
spatial coordinates become conjugate to each other, so that the system may be thought of as
defined on a ‘quantum phase space’: a noncommutative quantum field theory [1–9]. In such
an effective description, the noncommutativity of space is characterized by the antisymmetric
(‘Poisson’) tensor θ ij :

θ ij = θεij θ = −(eB)−1 i, j = 1, 2. (1)
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Hence, all the dependence on the external magnetic field is traded for the noncommutativity,
so that if B manifests itself through, for example, parity or time-reversal symmetry breaking
effects, this has to appear as a pure consequence of the noncommutativity of the effective
description.

A particularly interesting opportunity to check the noncommutative description arises
when one considers a commutative theory corresponding to charged particles in the presence
of a strong magnetic field and of an Abelian gauge field Aµ (unrelated to B) which plays
the role of a ‘source’ or external probe. It is well known that in a purely commutative
description, one may apply perturbation theory to obtain the induced Chern–Simons (CS)
term for Aµ. Of course, this is only possible in the case in which the relation between the
external magnetic field (B) and electronic density (ρ) is such that there is an integer number of
filled Landau levels, i.e. the filling fraction is ν = ρ

eB
2π = n with n integer (in units in which

h̄ = c = 1). In this evaluation, the constant magnetic field is taken into account exactly, since
the full propagator in the presence of the magnetic field and at a finite density is used in the
perturbative series [10]. The emergence of an induced CS term may be seen, in this case, to
be a parity breaking effect due to the magnetic field. In the more general case, i.e. when a
perturbative calculation is not correct, it can be argued, based on symmetry reasons, that there
should be a CS term in the effective action for the external probe. Equivalently, due to the
presence of the external magnetic field there should be a transverse response to a static electric
field. In two spatial dimensions, such a response can be obtained only if there is a CS term.
Moreover, the coefficient should be determined by the Hall conductance which can be shown
to be σxy = ρce

B
in a translational invariant system [11].

Our aim, in this paper, is to show that the same object, namely, the commutative induced
CS term, may also be derived in the corresponding effective noncommutative framework.
This result will look, at first sight, paradoxical, since a perturbative evaluation of the effective
action in the noncommutative model yields no induced CS term for the noncommutative gauge
field.

The organization of this paper is as follows: in section 2, we derive the noncommutative
theory as an effective description of the original commutative model, in section 3 we present
a calculation of the induced CS term in the noncommutative theory context and in section 4
we present our conclusions.

2. The noncommutative effective theory

To begin with, let us assume that the commutative system is defined by a generating functional
ZB[Aµ], where Aµ denotes an external source

ZB[Aµ] =
∫

Dψ̄Dψ exp{iS[ψ̄, ψ;B,Aµ]} (2)

and we have made explicit the fact that the action S depends on the magnetic field B. The
generating functional has been written as a path integral over a charged field, which will
typically be a spinless fermionic field. The corresponding action for this (nonrelativistic,
Grassmann) field is

S[ψ̄, ψ;B,A] =
∫

d3x

[
ψ̄ iD0ψ − 1

2m
Diψ(Diψ)

]
(3)

where the covariant derivatives are defined by

D0 = ∂0 − ie(a0 + A0) Di = ∂i − ie(Ai + Ai) (4)



Induced commutative Chern–Simons term from noncommutativity in planar systems 10079

where a0 is a constant, which plays the role of a chemical potential, fixing the total charge
Q of the system and Ai (i = 1, 2) is the vector potential of the constant magnetic field,
namely, εij ∂iAj = B. In order to understand the emergence of an effective noncommutative
description, we shall first set Aµ = 0, and then reintroduce it (as well as possible interactions)
afterwards, so that the generating functional we will first consider is

ZB ≡ ZB [0] =
∫

Dψ̄Dψ exp{iS[ψ̄, ψ;B, 0]}. (5)

We then use the complex combinationsD = D1 + iD2 andD = D1 − iD2, plus an integration
by parts, to write

S[ψ̄, ψ;B, 0] =
∫

d3x

[
ψ̄

(
i∂t + ea0 − eB

2m

)
ψ +

1

2m
ψ̄DDψ

]
(6)

where we have used the elementary relation [D1,D2] = −ieB. The noncommutative theory
will be obtained by performing an approximation which relies upon the smallness of the scale
defined by the mass in comparison with the one defined by the magnetic field B. Moreover, in
the noncommutative theory, the matter fields will verify first-order equations. In order to take
these facts into account, it is convenient to use an equivalent action S̃, obtained by introducing
two auxiliary complex fields λ and λ̄:

S̃[ψ̄, ψ, λ̄, λ;B] =
∫

d3x

[
ψ̄

(
i∂t + ea0 − eB

2m

)
ψ + λ̄Dψ + ψ̄D̄λ− m

2
λ̄λ

]
(7)

which, of course, reproduces S when λ̄ and λ are integrated out.
Assuming the charge density of the system to be fixed to some value ρ, we may write

ea0 = − 2π
m
ρ; thus we see that the ea0 term scales like m−1. In fact, all the terms in the first

line of (7) have the same dependence in m, since when one uses an expansion of the time
dependence of the fields in terms of the Landau level energies

En = ωc

(
n +

1

2

)
ωc = |eB|

m
(8)

the time derivative also picks up a factor of m−1, regardless of the level considered. The
noncommutative description arises when them → 0 limit is taken. This requires the vanishing
of the term which is quadratic in the Grassmann fields. Using the explicit values of the energies,
we see that this implies a constraint between the density and the magnetic field:

ρ = |eB| n
2π

n ∈ N. (9)

In this limit, the term quadratic in the auxiliary field vanishes, and the equations of motion
are first order: Dψ = 0, i.e. the fields are in the lowest Landau level (LLL). This means that
only the n = 1 case actually appears in (9), when m is strictly zero. This reduction to the
LLL implies that if there are more terms in the action (such as interactions) one has to replace
the standard product by the Moyal product: the theory becomes noncommutative [9]. This is
true, in particular, for the terms that correspond to the coupling to the external field Aµ. We
start from that standpoint in the following section.

3. Induced Chern–Simons term

The existence of an effective noncommutative description when the fields are projected to the
LLL amounts to

ZB[Aµ] � Ẑθ
[Â θ

µ

]
(m → 0) (10)
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where Ẑθ
[Â θ

µ

]
is the generating functional for the noncommutative theory,

Ẑθ
[Â θ

µ

] =
∫

D ̂̄ψDψ̂ exp
{
iSθ
[̂̄ψ, ψ̂; 0, Â θ

µ

]}
. (11)

Independently of the details of the particular model considered, the noncommutative action
will be assumed to have the same structure as the commutative one, except for the fact that there
will be no coupling to an external (noncommutative) magnetic field (B is entirely absorbed
in θ ). As we mentioned in section 1, when there is an integer number of filled Landau levels, a
local CS term in Aµ appears as the leading term in a derivative expansion of the commutative
generating functional, namely,

ZB[Aµ] � exp{iκ(B)SCS[Aµ]} (12)

where SCS denotes the CS action,

SCS[A] = 1

2

∫
d3x εµνλAµ∂νAλ (13)

while κ is the corresponding coefficient, determined by the number of filled Landau levels n,
through the relation

κ(B) = n

2π
= ρe

B
. (14)

Our aim is to show that the same object can be derived in the noncommutative theory
framework.

We shall provide an explicit calculation. To that end, we will assume that the commutative
theory action S is given by

S =
∫

d3x

[
ψ̄ iD0ψ − 1

2m
(Diψ)(Diψ)

]
(15)

whereDj = ∂j +ABj +Aj , with ABj denoting the part of the gauge field that corresponds to the
magnetic field B, i.e. εjk∂jAk = ieB, andD0 = ∂0 +iµ+A0, whereµ is the chemical potential,
to be fixed later, in terms of the total charge of the system. To simplify the comparison with the
noncommutative theory, we shall use the convention that Aµ is anti-Hermitian, and moreover
that the charge e has been absorbed into the gauge field definition. The noncommutative action
Sθ is, on the other hand, explicitly given by

Sθ =
∫

d3x

[
i ¯̂ψ � D̂0ψ̂ − 1

2m
(D̂iψ̂) � D̂iψ̂

]
(16)

where � denotes the noncommutative Moyal product:

f (x) � g(x) = exp

(
− i

2
θεij

∂

∂ζ i

∂

∂ξj

)
f (x + ζ )g(x + ξ)

∣∣∣∣
ζ=0,ξ=0

(17)

D̂j ψ̂ = ∂j ψ̂ + ψ̂ � Âj and D̂0 = ∂0ψ̂ + ψ̂ � (Â0 + iµ) (we have chosen the antifundamental
representation). After some standard manipulations, we may rewrite Sθ as

Sθ = Sfree + Sint (18)

where

Sfree =
∫

d3x

[
iψ̂ � (∂0 + iµ)ψ̂ − 1

2m
∂iψ̂ � ∂iψ̂

]
Sint =

∫
d3x

{
iψ̂ � Â0 � ψ̂ − 1

2m

[
ψ̂ � Âi � ∂iψ̂ − ∂iψ̂ � Âi � ψ̂ − ψ̂ � Âi � Âi � ψ̂

] }
.

(19)
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The induced CS term will be obtained, as usual, from the fermionic effective action Seff ,

Ẑ θ
[
Â θ
µ

] =
∫

Dψ̂Dψ̂ exp[i(Sfree + Sint)] = exp(iSeff [Â]) (20)

with

Seff = Tr

{
ln

[(
k0 −

�k2

2m
− µ

)
δ(k1 − k2)

+ i
∫

dp

(
Ã0(p) +

(�k1 + �k2)
�̃A(p)

2m

)
e−i/2kθpδ(k1 + p − k2)

+
∫

dp dq

2m
�̃A(p) �̃A(q) e−i/2ξ δ(k1 + p + q − k2)

]}
(21)

and Âµ(x) = ∫
d3pÃµ(p)eip·x . We use the following notation:

ξ = k1θp + k1θq − k1θk2 + pθq − pθk2 − qθk2

pθq = piθ
ijqj = θpiε

ijqj .

Expanding Seff up to second order in Aµ, we find

Seff � S
(0)
eff + S(1)eff + S(2)eff (22)

where

S
(0)
eff = Tr[ln(�−1(k1, µ)δ(k1 − k2))] (23)

S
(1)
eff = Tr[�(k1, µ)δ(k1 − k2)T1(k2, k3)] (24)

S
(2)
eff = Tr

[
�(k1, µ)δ(k1 − k2)T2(k2, k3)− 1

2�(k1, µ)δ(k1 − k2)

× T1(k2, k3)�(k3, µ)δ(k3 − k4)T1(k4, k5)
]

(25)

and we define

�(k,µ) =
(
k0 −

�k2

2m
− µ

)−1

T1(k1, k2) = i
∫

ddp

(
Ã0(p) +

(�k1 + �k2)
�̃A(p)

2m

)
δ(p + k1 − k2) e−i/2k1θp

T2(k1, k2) =
∫

dp dq

2m
�̃A(p) �̃A(q) e−i/2ξ δ(p + q + k1 − k2).

By analogy with the commutative field theory calculation, one may be inclined to think that
the CS term comes from the term of second order in Aµ:

S
(2)
eff =

∫
d3p d3k�(k,µ)

{ �̃A(−p) �̃A(p)
2m

+
1

2
�(k + p,µ)

[
Ã0(p) +

2�k + �p
2m

�̃A(p)
]

×
[
Ã0(−p) +

2�k + �p
2m

�̃A(−p)
]

exp(i/2pθp)

}
. (26)

However, it is straightforward to check that the transverse conductivity coming from that
term vanishes. This result has been derived under the assumption [∂i, ∂j ]Aµ = 0, namely,
‘trivial’ Aµ configurations. At the level of the calculation, this amounts to using the relation
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exp(ipθp)Ãµ(p) = Ãµ(p) in Fourier space. Relaxing that condition, however, does not help
to induce a CS term, in spite of the fact that it might produce parity breaking effects for some
special, singular configurations (i.e. vortex-like configurations) of the gauge field.

The resolution of this apparent paradox lies in the fact that the relation between the
commutative and noncommutative generating functionals is less direct than it seems, since the
commutative one depends on A while the noncommutative functional has Â θ

µ as its argument.
The relation between these two gauge fields is determined by the requisite that the mapping
should preserve the respective orbits of each theory. It is given by the Seiberg–Witten(SW)
map [12], which provides a relation of the type

Â θ
µ = Â θ

µ(A, θ) (27)

where the dependence is highly nonlinear, and in general it may be found only by applying
some sort of approximation scheme. Thus, our claim is that, in order to recover the induced
CS term of the commutative theory, one should use the SW relation to bring the effective
action back to a functional ofAµ, the commutative gauge field. Since the CS term is quadratic
in Aµ, the use of a first-order expansion in θ is sufficient, as a θ expansion of the SW map
yields [12, 13]

Âµ = Aµ − θρσ

2
Aρ{∂σAµ + Fσµ} + O(θ2). (28)

With this in mind, we may now calculate the term Sq [A], of second order in the commutative
gauge field A, coming from the effective action, obtaining

Sq[A] = Seven + Sodd (29)

with Seven given by S(2)eff as in equation (26), and

Sodd[A] = −i
θρσ

2

∫
d3x

∫
d3k

(2π)3
�(k,µ)Aρ(x)

[
(∂σA0 + Fσ0) +

2�k
2m

(∂σ �A + �Fσ )
]

(30)

where we have assumed trivial configurations for the field Aµ(x). Finally, we may write the
explicit form of the Sodd term:

Sodd = −iI (µ)
θρσ

2

∫
d3x Aρ(∂σA0 + Fσ0) (31)

where

I (µ) =
∫

d3k

(2π)3
�(k,µ) = − i

2π
mµ. (32)

Using this result, the relation θ = −(eB)−1, and rewriting the gauge field dependent terms in
covariant form, we arrive at the expression

Sodd = mµ

2πeB

∫
d3x εαβγAα∂βAγ (33)

which is a CS action, with a coefficient

κ = ρe

B
(34)

where we used the fact that ρ = mµ

2π , and we have restored the e factors that were absorbed
into the gauge field definition at the beginning of this section. This result coincides with
the one obtained from the commutative field theory calculation [10]. We remark that, as
in the commutative case, the CS coefficient will not be renormalized by higher-order terms
in the perturbative expansion in Ã. Moreover, higher-order terms in the SW relation will not
contribute to this term since they involve higher-order powers in θ .
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Regarding the general situation, i.e. the case of a general planar field theory corresponding
to charged particles, we note that the crucial property which is required is the existence of
a finite density (i.e. a finite chemical potential). The existence of a finite chemical potential
implies that in the evaluation of the fermionic determinant, the effective action will always
have a term proportional to µ and to the integral of Â0. The latter, when written in terms of
Aµ, is a commutative CS term.

4. Conclusions

We have shown that, for a system of nonrelativistic fermions in a magnetic field, the induced
CS term for an external gauge field may be rederived using the effective noncommutative
description corresponding to the original commutative theory. We insist that the object
we calculate is not the noncommutative induced CS term, but rather we show how the
usual, commutative CS term is indeed captured by the approximations made to introduce
the noncommutative description. The corresponding coefficients for the CS terms agree,
and moreover in both the commutative and noncommutative calculations there are constraints
between the density and the magnetic field. In the former, the reason is that perturbation theory
would be ill-defined for a system with partially filled Landau levels (degeneracy), while for
the latter the constraint appears in the very derivation of the noncommutative description (9).
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